

Know Quality. Choose Progold.

DAMIANO ZITO

DIRECT 3D PRINTING: NEW OPPORTUNITIES FOR JEWELRY PRODUCTION

PRESENTATION STRUCTURE AT YOUR GLANCE

Introduction

History of production processes and 3D direct precious metal printing overview

Materials

Overview on precious metals alloys already tested and their characteristics compared to casting

Resolution

Reproducible details and thicknesses

Geometries

Type of geometrical strengths

Surface Quality Roughness, supports' residuals and density

Productivity

Benchmark with casting

Sustainability Environmental impact

What to do next

Approach Recommendations

INTRODUCTION HOW DOES IT WORKS A 3D METAL PRINTER

Type of Process Powder metallurgy process

Commercials Acronyms SLM™, SLS™, DMLS™

Technology Type Layer by Layer

Tested Precious Metals Tested precious metals: Au, Pt, Pd, Ag

Printers' Producers

ReaLizer GmbH, EOS GmbH, Concept Laser GmbH, Sisma S.p.A.; Others: Phenix Systems, SLM Solution GmbH, Arcam AB, <u>Renishaw</u>

Precious Metals Powders Producers Progold S.p.A., Cookson Gold Ltd, Legor

Group S.p.A., Hilderbrand CIE SA

M<u>ateria</u>ls

MECHANICAL PROPERTIES BENCHMARK

MATERIALS 3N YELLOW GOLD MECHANICAL PROPERTIES

Alloy ID	UTS [MPa]	Elongation [%]	Hardness [HV]
Au3N	>450	>25	<150
Au5N+	>550	>15	<160
AuG2Pd130	>550	>15	<190
Pt950	>670	>20	<180
TiG4	>550	>15	>200

MATERIALS BENCHMARK OF GRAIN SIZE

3D Direct Metal Printing

Traditional Casting

Direct Casting

MATERIALS HIGH MELTING TEMPERATURE ALLOYS

Platinum 950‰ These alloys has liquidus temperature above 1750°C **Titanium Grade 4** These alloys has liquidus temperature above 1650°C

Composite Alloys AuTi and AuNb

Colour Super White YI<15

Density 30% less than standard Pd white gold

MATERIALS ALLOYS OPPORTUNITIES

RESOLUTION THICKNESSES VS. SURFACE EXTENSION

+

Casting To hollow rings the cast need to be assembled

3D direct metal printing

monolithic

To hollow the ring it can be printed

=

SOLDERING LINE

GEOMETRIES

HOLLOW WEARABLE & SMART HOLLOW KSIZE

GEOMETRIES

REINFORCEMENT RIB & LATTICE STRUCTURE

REINFORCING RIB

1.

3D direct metal printing allows to design an internal reinforcing rib granting the proper stifness to large and thin surfaces, in order to avoid any anti-aesthetical damage due to accidental hits or bumps. This is also the less weight invasive solution to enforce a hollow volume.

2.

LATTICE STRUCTURE SUPPORT

An additional opportunity is to build an internal support system, so called lattice structure, which enforces the jewel as well as it prevents the piece from sounding as hollow. This option will be at the end a bit heavier than the reinforcing rib previously described.

GE<u>OMETR</u>IES

REINFORCEMENT RIB & LATTICE STRUCTURE

GEOMETRIES REINFORCEMENT RIB & LATTICE STRUCTURE

DIRECT 3D PRINTING / SURFACE IMAGE

SURFACE QUALITY SUPPORTS RESIDUALS

PRODUCTION LEAD TIME

PRODUCTION CAPACITY BENCHMARK

Process	Production Capacity [kg/day]
Traditional Casting	3.75
Direct Casting	2.20
3D Direct Metal Printing	0.35

SUSTAINABILITY CARBON FOOTPRINT

